霍爾電流傳感器在整流器和器電源中的應(yīng)用
點(diǎn)擊次數(shù):2714 更新時(shí)間:2020-05-25
霍爾電流傳感器在整流器和器電源中的應(yīng)用
整流器和器電源單元(PSU)中的功率因數(shù)校正(PFC)電路和逆變電路都需要將壓側(cè)的電流信號(hào)到位于低壓側(cè)的器,因此要用到式電流傳感器。式電流有多種實(shí)現(xiàn)方式,例如電流互感器(CT)、放大器和霍爾效應(yīng)電流傳感器。其中,霍爾效應(yīng)電流傳感器因其簡(jiǎn)便易用、、體積小且具有直流能力,成為比較的選擇。
電流互感器是基于變壓器的原理對(duì)電流進(jìn)行采樣,使用CT可以MOSFET或者IGBT的開(kāi)通電流。CT的響應(yīng)速度使其適合于用做峰值電流和過(guò)流保護(hù)。但是基于變壓器耦合原理的CT無(wú)法感測(cè)直流或低頻的電流,從而導(dǎo)致其不能直接工頻AC電流,或因?yàn)橹婚_(kāi)通電流的間接方法而損失測(cè)量(沒(méi)有關(guān)斷電流)。另外,由于CT需要使用鐵氧體磁芯,體積很難做小,而體積較大的CT又會(huì)增大電源開(kāi)關(guān)環(huán)路,產(chǎn)生的電壓和噪聲干擾。
而霍爾效應(yīng)電流傳感器則是一種、體積小的選擇,它可以在直流條件下工作,而且能夠以良好的線度和測(cè)量包含了開(kāi)通和關(guān)斷的AC總電流。同時(shí),霍爾效應(yīng)電流傳感器的體積可以做到SOIC-8的封裝,同一顆集成IC一樣大小,使PCB的布局加,實(shí)現(xiàn)的功率密度。
表1對(duì)霍爾效應(yīng)電流傳感器與電流互感器進(jìn)行了比較。
在將霍爾效應(yīng)電流傳感器應(yīng)用于電源或器PSU時(shí),需要評(píng)估電流的范圍、連續(xù)電流耐受能力、響應(yīng)速度(/帶)和電壓等。在某些情況下,電源或器電源可能還需要向上位機(jī)匯報(bào)當(dāng)前的運(yùn)行功率,此時(shí)的霍爾電流傳感器(如TI的TMCS1100)可幫助系統(tǒng)實(shí)現(xiàn)≥1%的電流。
圖1展示了,在分別使用3.3 V和5 V供電情況下,霍爾效應(yīng)電流傳感器的應(yīng)用電路。與使用3.3 V電源供電相比,使用5 V供電可用拓霍爾傳感器的電流范圍。以TMCS1100A1為例,霍爾傳感器的靈敏度為50 mV/A:如果使用3.3V電源,則電流范圍為-33 A?+ 33 A(雙向);而使用5.0V電源時(shí),電流范圍可以擴(kuò)展到-50 A?+ 50A。另外,在設(shè)計(jì)中應(yīng)當(dāng)注意,除了電流范圍之外,還需要考慮傳感器的連續(xù)電流耐受能力,當(dāng)電流耐受力不足時(shí),可以通過(guò)改善傳感器的散熱來(lái)優(yōu)化。
(a)
(b)
圖1:霍爾效應(yīng)電流傳感器的常見(jiàn)應(yīng)用:采用3.3 V電源的霍爾效應(yīng)電流傳感器(a);采用5 V電源的霍爾效應(yīng)電流傳感器(b)
在使用霍爾效應(yīng)電流傳感器的電路板布局中,要注意以下因素:
散熱:盡量增大一次側(cè)電流導(dǎo)線的覆銅面積,可以提霍爾電流傳感器的散熱能力,從而增加傳感器的大平均電流耐受能力。另外,還可以使用厚銅箔的PCB,或者在初走線上放置一些散熱過(guò)孔,或者把霍爾電流傳感器和PCB走線放置在風(fēng)道內(nèi),都可以改善霍爾電流傳感器的平均電流耐受能力。
一次側(cè)電流磁場(chǎng):布局時(shí),應(yīng)盡量避免大電流的走線靠近霍爾電流傳感器。
要求:從系統(tǒng)整體考慮爬電距離和電氣間隙,當(dāng)霍爾電流傳感器無(wú)法所需的PCB爬電距離時(shí),可以在電路板上挖槽以達(dá)到系統(tǒng)的要求。
總結(jié),在整流器和器PSU中,CT適合于峰值電流和過(guò)流保護(hù),但它體積較大且不?;魻栃?yīng)電流傳感器體積小,,使用簡(jiǎn)單方便,并且適合交流線路電流。希望本文介紹的關(guān)于霍爾電流傳感器的一些用法對(duì)大家有所幫助。